

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Heat Treating Services Unlimited, Inc. 210 LaDean Court Simpsonville, SC 29681

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President

Expiry Date: 03 August 2026 Certificate Number: L2138

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Heat Treating Services Unlimited, Inc.

210 LaDean Court Simpsonville, SC 29681 Neil Revis 864-289-0644

CALIBRATION

Valid to: August 3, 2026

Certificate Number: L2138

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source/Measure	(0 to <mark>4) mA</mark> (4 to 20) mA	1.5 μA 4.4 μA	Martel 3001 Calibrator with Agilent 3458A 8.5 Digit Multimeter
DC Voltage – Source/Measure	(0 to 110) mV (0.11 to 1.1) V (1.1 to 11) V	21 μV 6.1 mV 0.71 mV	Martel 3001 Calibrator with Agilent 3458A 8.5 Digit Multimeter
Resistance Simulation of RTD Indicators – Source/Measure	Pt 385, 100 Ω (0 to 400) °C (400 to 800) °C Pt 385, 1 000 Ω (0 to 195) °C	0.11 °C 0.062 °C 0.22 °C	Martel 3001 Calibrator with Agilent 3458A 8.5 Digit Multimeter
Electrical Simulation of Thermocouple Indicators – Source/Measure ¹	Type B (100 to 593) °C (593 to 849) °C (849 to 1 301) °C Type E (-200 to 0) °C (0 to 982) °C Type J (-100 to 800) °C (800 to 1 200) °C (400 to 1 372) °C Type N (-100 to 900) °C (900 to 1 300) °C	0.64 °C 0.63 °C 0.74 °C 0.15 °C 0.19 °C 0.12 °C 0.17 °C 0.14 °C 0.16 °C 0.14 °C	Thermocouple Half Junction with Agilent 3458A 8.5 Digit Multimeter and Ice Point

www.anab.org

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators – Source/Measure ¹	Type R (-20 to 0) °C (0 to 100) °C (100 to 1 750) °C Type S (0 to 200) °C (200 to 1 400) °C (1 400 to 1 752) °C Type T (-200 to 0) °C (0 to 400) °C	0.19 °C 0.17 °C 0.19 °C 0.21 °C 0.18 °C 0.2 °C 0.13 °C 0.13 °C	Thermocouple Half Junction with Agilent 3458A 8.5 Digit Multimeter and Ice Point
Mass and Mass Related			

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Pressure Devices – Hydraulic ¹	Up to 500 psig (500 to 1 000) psig (1 000 to 5 000) psig (5 000 to 10 000) psig	1 psi 1.2 psi 3.5 psi 7.6 psi	Comparison to Fluke 700G Pressure Gage
Differential Pressure Devices ¹	(6 to 50) inH ₂ O (50 to 100) inH ₂ O	0.23 inH ₂ O 0.24 inH ₂ O	Comparison to Meriam M2000 Smart Manometer

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Uniformity Survey of Furnaces & Ovens ¹	(0 to 1 093) °C (1 093 to 1 250) °C	1 °C 2.7 °C	In accordance with AMS 2750F using a Datalogger and Type K Thermocouples.
Uniformity Survey of Furnaces & Ovens ¹	(0 to 1 093) °C (1 093 to 1 300) °C	1 °C 2.4 °C	In accordance with AMS 2750F using a Datalogger and Type N Thermocouples.

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – System Accuracy Tests ¹	Type K (0 to 1 093) °C (1 093 to 1 250) °C Type N (0 to 1 093) °C (1 093 to 1 250) °C	1.1 °C 2.1 °C 1.2 °C 2.1 °C	Thermocouple Calibrator with Reference Thermocouple Wire in accordance with AMS 2750F.

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Timers ¹	Up to <mark>60 min</mark>	0.51 s	Comparison to a Reference Stopwatch

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. This scope is formatted as part of a single document including Certificate of Accreditation No. L2138.

Jason Stine, Vice President

Page 3 of 3

